Vector VFDs
A standard VFD (lets call it a Scalar Drive) puts out a PWM pattern designed to maintain a constant V/Hz pattern to the motor under ideal conditions. How the motor reacts to that PWM pattern is very dependent upon the load conditions. The Scalar drive knows nothing about that, it only tells the motor what to do. If for example it provides 43Hz to the motor, and the motor spins at a speed equivalent to 40Hz, the Scalar Drive doesn't know. You can't do true torque control with a scalar drive because it has no way of knowing what the motor output torque is (beyond an educated guess).
These problems associated with the scalar VFDs inability to alter it's output with changes in the load gets worse as the speed reference goes down, so the "rule of thumb" in determining the need for which technology to use is that scalar drives work OK at speed ranges between 5:1 (50Hz applications) or 6:1 (60Hz applications). So if your application will need accurate control below 10Hz, scalar may not work for you.
A Vector Drive uses feedback of various real world information (more on that later) to further modify the PWM pattern to maintain more precise control of the desired operating parameter, be it speed or torque. Using a more powerful and faster microprocessor, it uses the feedback information to calculate the exact vector of voltage and frequency to attain the goal. In a true closed loop fashion, it goes on to constantly update that vector to maintain it. It tells the motor what to do, then checks to see if it did it, then changes its command to correct for any error. Vector drives come in 2 types, Open Loop and Closed Loop, based upon the way they get their feedback information.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment